Extensions 1→N→G→Q→1 with N=C22 and Q=C8:S3

Direct product G=NxQ with N=C22 and Q=C8:S3
dρLabelID
C22xC8:S396C2^2xC8:S3192,1296

Semidirect products G=N:Q with N=C22 and Q=C8:S3
extensionφ:Q→Aut NdρLabelID
C22:(C8:S3) = C8:S4φ: C8:S3/C8S3 ⊆ Aut C22246C2^2:(C8:S3)192,959
C22:2(C8:S3) = C3:C8:26D4φ: C8:S3/C3:C8C2 ⊆ Aut C2296C2^2:2(C8:S3)192,289
C22:3(C8:S3) = C24:33D4φ: C8:S3/C24C2 ⊆ Aut C2296C2^2:3(C8:S3)192,670
C22:4(C8:S3) = D6:M4(2)φ: C8:S3/C4xS3C2 ⊆ Aut C2248C2^2:4(C8:S3)192,285

Non-split extensions G=N.Q with N=C22 and Q=C8:S3
extensionφ:Q→Aut NdρLabelID
C22.1(C8:S3) = Dic6.C8φ: C8:S3/C3:C8C2 ⊆ Aut C22964C2^2.1(C8:S3)192,74
C22.2(C8:S3) = D12.C8φ: C8:S3/C24C2 ⊆ Aut C22962C2^2.2(C8:S3)192,67
C22.3(C8:S3) = (C22xS3):C8φ: C8:S3/C4xS3C2 ⊆ Aut C2248C2^2.3(C8:S3)192,27
C22.4(C8:S3) = (C2xDic3):C8φ: C8:S3/C4xS3C2 ⊆ Aut C2296C2^2.4(C8:S3)192,28
C22.5(C8:S3) = C24.97D4φ: C8:S3/C4xS3C2 ⊆ Aut C22484C2^2.5(C8:S3)192,70
C22.6(C8:S3) = C48:C4φ: C8:S3/C4xS3C2 ⊆ Aut C22484C2^2.6(C8:S3)192,71
C22.7(C8:S3) = Dic3.M4(2)φ: C8:S3/C4xS3C2 ⊆ Aut C2296C2^2.7(C8:S3)192,278
C22.8(C8:S3) = (C2xC24):5C4central extension (φ=1)192C2^2.8(C8:S3)192,109
C22.9(C8:S3) = C2xDic3:C8central extension (φ=1)192C2^2.9(C8:S3)192,658
C22.10(C8:S3) = C2xC24:C4central extension (φ=1)192C2^2.10(C8:S3)192,659
C22.11(C8:S3) = C2xD6:C8central extension (φ=1)96C2^2.11(C8:S3)192,667

׿
x
:
Z
F
o
wr
Q
<