Extensions 1→N→G→Q→1 with N=C22 and Q=C8⋊S3

Direct product G=N×Q with N=C22 and Q=C8⋊S3
dρLabelID
C22×C8⋊S396C2^2xC8:S3192,1296

Semidirect products G=N:Q with N=C22 and Q=C8⋊S3
extensionφ:Q→Aut NdρLabelID
C22⋊(C8⋊S3) = C8⋊S4φ: C8⋊S3/C8S3 ⊆ Aut C22246C2^2:(C8:S3)192,959
C222(C8⋊S3) = C3⋊C826D4φ: C8⋊S3/C3⋊C8C2 ⊆ Aut C2296C2^2:2(C8:S3)192,289
C223(C8⋊S3) = C2433D4φ: C8⋊S3/C24C2 ⊆ Aut C2296C2^2:3(C8:S3)192,670
C224(C8⋊S3) = D6⋊M4(2)φ: C8⋊S3/C4×S3C2 ⊆ Aut C2248C2^2:4(C8:S3)192,285

Non-split extensions G=N.Q with N=C22 and Q=C8⋊S3
extensionφ:Q→Aut NdρLabelID
C22.1(C8⋊S3) = Dic6.C8φ: C8⋊S3/C3⋊C8C2 ⊆ Aut C22964C2^2.1(C8:S3)192,74
C22.2(C8⋊S3) = D12.C8φ: C8⋊S3/C24C2 ⊆ Aut C22962C2^2.2(C8:S3)192,67
C22.3(C8⋊S3) = (C22×S3)⋊C8φ: C8⋊S3/C4×S3C2 ⊆ Aut C2248C2^2.3(C8:S3)192,27
C22.4(C8⋊S3) = (C2×Dic3)⋊C8φ: C8⋊S3/C4×S3C2 ⊆ Aut C2296C2^2.4(C8:S3)192,28
C22.5(C8⋊S3) = C24.97D4φ: C8⋊S3/C4×S3C2 ⊆ Aut C22484C2^2.5(C8:S3)192,70
C22.6(C8⋊S3) = C48⋊C4φ: C8⋊S3/C4×S3C2 ⊆ Aut C22484C2^2.6(C8:S3)192,71
C22.7(C8⋊S3) = Dic3.M4(2)φ: C8⋊S3/C4×S3C2 ⊆ Aut C2296C2^2.7(C8:S3)192,278
C22.8(C8⋊S3) = (C2×C24)⋊5C4central extension (φ=1)192C2^2.8(C8:S3)192,109
C22.9(C8⋊S3) = C2×Dic3⋊C8central extension (φ=1)192C2^2.9(C8:S3)192,658
C22.10(C8⋊S3) = C2×C24⋊C4central extension (φ=1)192C2^2.10(C8:S3)192,659
C22.11(C8⋊S3) = C2×D6⋊C8central extension (φ=1)96C2^2.11(C8:S3)192,667

׿
×
𝔽