extension | φ:Q→Aut N | d | ρ | Label | ID |
C22.1(C8⋊S3) = Dic6.C8 | φ: C8⋊S3/C3⋊C8 → C2 ⊆ Aut C22 | 96 | 4 | C2^2.1(C8:S3) | 192,74 |
C22.2(C8⋊S3) = D12.C8 | φ: C8⋊S3/C24 → C2 ⊆ Aut C22 | 96 | 2 | C2^2.2(C8:S3) | 192,67 |
C22.3(C8⋊S3) = (C22×S3)⋊C8 | φ: C8⋊S3/C4×S3 → C2 ⊆ Aut C22 | 48 | | C2^2.3(C8:S3) | 192,27 |
C22.4(C8⋊S3) = (C2×Dic3)⋊C8 | φ: C8⋊S3/C4×S3 → C2 ⊆ Aut C22 | 96 | | C2^2.4(C8:S3) | 192,28 |
C22.5(C8⋊S3) = C24.97D4 | φ: C8⋊S3/C4×S3 → C2 ⊆ Aut C22 | 48 | 4 | C2^2.5(C8:S3) | 192,70 |
C22.6(C8⋊S3) = C48⋊C4 | φ: C8⋊S3/C4×S3 → C2 ⊆ Aut C22 | 48 | 4 | C2^2.6(C8:S3) | 192,71 |
C22.7(C8⋊S3) = Dic3.M4(2) | φ: C8⋊S3/C4×S3 → C2 ⊆ Aut C22 | 96 | | C2^2.7(C8:S3) | 192,278 |
C22.8(C8⋊S3) = (C2×C24)⋊5C4 | central extension (φ=1) | 192 | | C2^2.8(C8:S3) | 192,109 |
C22.9(C8⋊S3) = C2×Dic3⋊C8 | central extension (φ=1) | 192 | | C2^2.9(C8:S3) | 192,658 |
C22.10(C8⋊S3) = C2×C24⋊C4 | central extension (φ=1) | 192 | | C2^2.10(C8:S3) | 192,659 |
C22.11(C8⋊S3) = C2×D6⋊C8 | central extension (φ=1) | 96 | | C2^2.11(C8:S3) | 192,667 |